ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Кондуктометры портативные КП-150МИ

Назначение средства измерений

Кондуктометры портативные КП-150МИ (далее - кондуктометры) предназначены для измерения удельной электропроводности (УЭП) и температуры водных растворов. Кондуктометры могут применяться для определения массовой концентрации солей в водных растворах в пересчете на NaCl (условного солесодержания - УСС) и расчета удельной электропроводности, приведенной к 25 °С (УЭ Π_{25}).

Описание средства измерений

Принцип действия кондуктометров основан на преобразовании тока, протекающего между электродами в электрохимической ячейке датчика под воздействием приложенного переменного напряжения, в значение удельной электропроводности, а также на преобразовании сопротивления встроенного в датчик термоэлемента в значение температуры.

Кондуктометр состоит из первичного измерительного преобразователя (далее - датчик) и вторичного измерительного преобразователя (далее - преобразователь).

В комплекте с преобразователем можно использовать следующие датчики электропроводности:

ДЭ-01 - двухэлектродный контактный кондуктометрический датчик для измерений удельной электропроводности обессоленных вод;

ДЭ-02 - двухэлектродный контактный кондуктометрический датчик для измерений удельной электропроводности технологических растворов и природных вод.

Кондуктометры выпускаются в следующих исполнениях:

КП-150МИ - кондуктометр, укомплектованный датчиками электропроводности ДЭ-01 и ДЭ-02, предназначенный для измерений удельной электропроводности обессоленных, природных вод и технологических растворов.

КП-150.1МИ - кондуктометр, укомплектованный датчиком электропроводности ДЭ-01, предназначенный для измерений удельной электропроводности обессоленных вод.

КП-150.2МИ - кондуктометр, укомплектованный датчиком электропроводности ДЭ-02, предназначенный для измерений удельной электропроводности природных вод и технологических растворов.

Кондуктометры могут производить измерения в протоке с применением входящей в комплект поставки проточной ячейки.

Результаты измерений кондуктометров выводятся в цифровой форме на встроенный дисплей. Эти значения могут быть переданы на персональный компьютер по интерфейсу связи по стыку C2 в соответствии с ГОСТ 18145-81.

Общий вид кондуктометра и схема пломбировки от несанкционированного доступа представлены на рисунке 1

Архангельск (8182)63-90-72 Астана (7172)727-132 Астарахань (8512)99-46-04 Барпаул (3852)73-04-60 Белгород (4722)40-23-64 Брянск (4832)59-03-52 Владивосток (423)249-28-31 Волгоград (844)278-03-48 Вологда (8172)26-41-59 Воронеж (473)204-51-73 Екатеринбург (343)384-55-89 Иваново (4932)77-34-06 Нжевск (3412)26-03-58 Иркутск (395)279-98-46 Казань (843)206-01-48 Калиниград (4012)72-03-81 Калуга (4842)92-23-67 Кемерово (3842)65-04-62 Киров (8332)68-02-04 Краснолар (861)203-40-90 Красноярск (391)204-63-61 Курск (4712)77-13-04 Липецк (4742)52-20-81 Киргизия (996)312-96-26-47

Магнитогорск (3519)55-03-13 Москва (495)268-04-70 Мурманск (8152)59-64-93 Набережные Челны (8552)20-53-41 Нижний Новгород (831)429-08-12 Новокузнецк (3843)20-46-81 Новосибирск (383)227-86-73 Омск (3812)21-46-40 Орел (4862)44-53-42 Оренбург (3532)37-68-04 Пенза (8412)22-31-16 Пермь (342)205-81-47 Ростов-на-Дону (863)308-18-15 Рязань (4912)46-61-64 Самара (846)206-03-16 Санкт-Петербург (812)309-46-40 Саратов (845)249-38-78 Севастополь (8692)22-31-93 Симферополь (3652)67-13-56 Смоленск (4812)29-41-54 Сочи (862)225-72-31 Ставрополь (8652)20-65-13 Таджикистан (992)427-82-92-69

Сургут (3462)77-98-35 Тверь (4822)63-31-35 Томск (3822)98-41-53 Тула (4872)74-02-29 Тюмень (3452)66-21-18 Ульяновск (8422)24-23-59 Уфа (347)229-48-12 Хабаровск (4212)92-98-04 Челябинск (351)202-03-61 Череповец (8202)49-02-64 Ярославль (4852)69-52-93

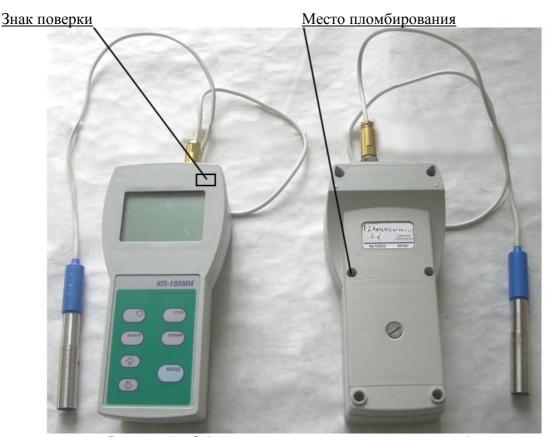


Рисунок 1 - Общий вид кондуктометра, схема пломбирования от несанкционированного доступа и нанесения знака поверки

Программное обеспечение

Программное обеспечение (ПО) кондуктометра КП-150МИ состоит из встроенной в микропроцессорный модуль метрологически значимой части ПО. Метрологические характеристики кондуктометра оценены с учетом влияния на них встроенного ПО.

ПО служит для обработки сигналов, поступающих с датчика, пересчета их в измеряемые величины и для вывода результатов на дисплей преобразователя.

Обновление ПО в процессе эксплутации кондуктометра не предусмотрено. ПО кондуктометра является фиксированным, не загружаемым и может быть изменено только на предприятии-изготовителе,

Конструкция кондуктометров исключает возможность несанкционированного влияния на встроенное программное обеспечение и измерительную информацию.

Уровень защиты встроенного программного обеспечения «высокий» в соответствии с Р 50.2.077-2014.

Идентификационные данные ПО приведены в таблице 1.

Таблица 1 - Идентификационные данные ПО

тионная т тідентификационные данные тто	
Идентификационные данные (признаки)	Значение
Идентификационное наименование ПО	-
Номер версии (идентификационный номер) ПО	v1.XX,
	где XX - метрологически незначимая часть
Цифровой идентификатор ПО	-

Метрологические и технические характеристики

Таблица 2 - Метрологические характеристики

1 аолица 2 - Метрологические характеристики			
Наименование характеристики	Значение		
Диапазоны измерений:			
- УЭП, мкСм/см			
с датчиком ДЭ-01	от 0,1 до 1000		
с датчиком ДЭ-02	от 10 до 20000		
- температура анализируемой среды (D _t), °C	от +5 до +50		
Пределы допускаемых значений основной абсолютной			
погрешности при измерении УЭП при нормальных условиях			
применения ($D_{y_{3\Pi}}$):			
- с датчиком ДЭ-01	$\pm (0,003+0,015c)$		
- с датчиком ДЭ-02	$\pm (0.03+0.015c),$		
	где С - измеренное значение		
	УЭП, мкСм/см		
Пределы допускаемого значения основной абсолютной			
погрешности при измерении температуры, °С	±1,0		
Пределы дополнительной погрешности:			
- при измерении УЭП, мкСм/см, обусловленная изменением:			
-температуры анализируемой среды от +5 до +50 °С на каждые			
15 °C от температуры нормальных условий применения	$\pm 1,5$ X D_{vin}		
-температуры окружающего воздуха от -10 до +55 °C на каждые			
10 °С от температуры нормальных условий применения	±1,5хD _{уэп} ±0,5хD _{уэп} ±0,25хD _{уэп}		
- расхода анализируемой среды через проточную ячейку	, , , , , , ,		
от 2 до 12 л/ч	±0,25×D _{v2II}		
- при измерении температуры анализируемой среды, обуслов-	, , ,		
ленная изменением температуры окружающего воздуха от -10			
до +55 °C на каждые 10 °C от температуры нормальных			
условий применения, °С	±0,5×D _t		
Пределы допускаемого значения относительной погрешности			
пересчета УЭП в УСС, %	±1,0		
Пределы допускаемого значения относительной погрешности			
пересчета УЭП в удельную электропроводность, приведенную			
к 25 °С (УЭП ₂₅), %	±0,5		
Время установления рабочего режима, мин, не более	15		
Время непрерывной работы, ч, не менее	8		
Нестабильность показаний за 8 ч непрерывной работы	в пределах допускаемой		
	основной погрешности		
	измерений		
Время установления показаний кондуктометров			
при скачкообразном изменении УЭП, с, не более	30		
Время установления показаний кондуктометров			
при скачкообразном изменении температуры, с, не более	180		

Продолжение таблицы 2

Наименование характеристики	Значение
Цена единицы младшего разряда (дискретности) для интерва-	
лов показаний:	
- УЭП (УЭП ₂₅):	
от 0,100 до 9,999 мкСм/см	0,001
от 10,00 до 99,99 мкСм/см	0,01
от 100,0 до 999,9 мкСм/см	0,1
от 1000 до 9999 мкСм/см	1
от 10,00 до 19,99 мСм/см	0,01
- УСС (в пересчете на NaCl):	
от 20,0 до 999,9 мкг/дм ³	0,1
от 1000 до 9999 мкг/дм ³	1
от 10,00 до 99,99 мг/дм ³	0,01
от 100,0 до 999,9 мг/дм ³	0,1
от 1000 до 9999 мг/дм ³	1
от 10,00 до 12,00 г/дм 3	0,01
- температуры анализируемой среды от +5 до +50 °C	0,1
Нормальные условия применения:	
- температура окружающего воздуха, °С	от +15 до +25
- температура анализируемой среды, °С	от +17 до +23

Таблица 3 - Основные технические характеристики

Таблица 3 - Основные технические характеристики			
Наименование характеристики	Значение		
Питание:			
- напряжение питания, В			
от автономного источника, состоящего из четырех элементов			
напряжением	от 1,25 до 1,7		
допускается питание от внешнего источника постоянного			
напряжения	от 5 до 14		
- ток, мА	10		
Габаритные размеры (длина×ширина×высота), мм, не более:			
- преобразователь	210´100´60		
- датчик ДЭ-01 (ДЭ-02) (без кабеля) 1)	130′ 18′ 18		
- проточная ячейка (без датчика)	130′50′40		
Масса, кг, не более:			
- преобразователь	0,3		
 датчик ДЭ-01 (ДЭ-02) (без кабеля) 	0,1		
- проточная ячейка (без датчика)	0,1		
Рабочие условия эксплуатации:			
- температура окружающего воздуха, °С	от -10 до +55		
- относительная влажность окружающего воздуха			
при температуре +30 °C, %, не более	90		
- атмосферное давление, кПа	от 70 до 106,7		
Средний срок службы, лет, не менее	10		
Средняя наработка на отказ, ч, не менее	20000		
1) H			
1) Длина кабеля не более 850 мм			

Знак утверждения типа

наносится на титульные листы руководства по эксплуатации и формуляра, а также на корпус преобразователя типографским способом.

Комплектность средства измерений

Таблица 4 - Комплектность средства измерений

Наименование	Обозначение	Количество, шт.
Преобразователь КП-150МИ	ГРБА.414331.001	1
Датчик ДЭ-01 ¹⁾	ГРБА.414321.002	-
Датчик ДЭ-02 ¹⁾	ГРБА.414321.002-01	-
Ячейка проточная	ГРБА.301112.004	1
Блок питания ²⁾	-	-
Методика поверки	ГРБА.414311.001МП	1
Формуляр	ГРБА.414311.002ФО	1
Руководство по эксплуатации	ГРБА.414311.002РЭ	1

¹⁾ Поставляется в зависимости от исполнения кондуктометра в соответствии с заказом;

Поверка

осуществляется по документу ГРБА.414311.001МП «Кондуктометры портативные КП-150МИ. Методика поверки», утвержденному ФБУ «ЦСМ Московской области» 25 сентября 2017 г.

Основные средства поверки:

- рабочий эталон 2-го разряда по ГОСТ 8.457-2015 кондуктометр лабораторный автоматизированный с двумя проточно-погружными первичными преобразователями КЛ-4 ИМПУЛЬС, рег. № 12048-04;
- рабочий эталон 3-го разряда по ГОСТ 8.558-2009 термометр цифровой малогабаритный ТЦМ-9410/M2, рег. № 32156-06;
 - мера-имитатор Р40116, рег. № 10982-09;
 - магазины сопротивлений Р4831, рег. № 6332-77;

Допускается применение аналогичных средств поверки, обеспечивающих определение метрологических характеристик поверяемых кондуктометров с требуемой точностью.

Знак поверки наносится на свидетельство о поверке и (или) на корпус преобразователя.

Сведения о методиках (методах) измерений

приведены в эксплуатационном документе.

Нормативные и технические документы, устанавливающие требования к кондуктометрам портативным КП-150МИ

ГОСТ 22261-94 Средства измерений электрических и магнитных величин. Общие технические условия.

ГОСТ 8.457-2015 ГСИ. Государственная поверочная схема для средств измерений удельной электрической проводимости жидкостей.

ГОСТ 8.558-2009 ГСИ. Государственная поверочная схема для средств измерения температуры.

ТУ 26.51.53-060-89650280-2017 Кондуктометры портативные КП-150МИ. Технические условия.

²⁾ Поставляется по требованию заказчика

Архангельск (8182)63-90-72 Астана (7172)727-132 Астрахань (8512)99-46-04 Барнаул (3852)73-04-60 Белгород (4772)40-23-64 Брянск (4832)59-03-52 Владивосток (423)249-28-31 Волгоград (844)278-03-48 Вологра (8172)26-41-59 Воронеж (473)204-51-73 Екатеринбург (343)384-55-89 Иваново (4932)77-34-06

Ижевск (3412)26-03-58 Иркутск (395)279-98-46 Казань (843)206-01-48 Калининград (4012)72-03-81 Калуга (4842)92-23-67 Кемерово (3842)65-04-62 Киров (8332)68-02-04 Красноярск (391)204-63-61 Курск (4712)77-13-04 Линецк (4742)52-20-81 Киртизия (996)312-96-26-47 Магнитогорск (3519)55-03-13 Москва (495)268-04-70 Мурманск (8152)59-64-93 Набережные Челны (8552)20-53-41 Нижний Новгород (831)429-08-12 Новокузнецк (3843)20-46-81 Новосибирск (383)227-86-73 Омск (3812)21-46-40 Орел (4862)44-53-42 Оренбург (3532)37-68-04 Пенза (8412)22-31-16 Казахстан (772)734-952-31

Пермь (342)205-81-47 Ростов-на-Дону (863)308-18-15 Рязань (4912)46-61-64 Самара (846)206-03-16 Санкт-Петербург (812)309-46-40 Саратов (845)249-38-78 Севастополь (8692)22-31-93 Симферополь (3652)67-13-56 Смоленск (4812)29-41-54 Сочи (862)225-72-31 Ставрополь (8652)20-65-13 Таджикистан (992)427-82-92-69 Сургут (3462)77-98-35 Тверь (4822)63-31-35 Томск (3822)98-41-53 Тула (4872)74-02-29 Тюмень (3452)66-21-18 Ульяновск (8422)24-23-59 Уфа (347)229-48-12 Хабаровск (4212)92-98-04 Челябинск (351)202-03-61 Череповец (8202)49-02-64 Ярославль (4852)69-52-93

https://it.nt-rt.ru/ || ita@nt-rt.ru